Performance Reference¶
System Requirements¶
Minimum Requirements¶
- CPU: 2 cores
- Memory: 4GB RAM
- Storage: 20GB
- Network: 100Mbps
Recommended Requirements¶
- CPU: 4+ cores
- Memory: 8GB+ RAM
- Storage: 50GB SSD
- Network: 1Gbps
Performance Tuning¶
Database Optimization¶
# Connection Pool Configuration
engine = create_async_engine(
settings.db_url,
pool_size=settings.db_pool_size,
max_overflow=settings.db_max_overflow,
pool_timeout=settings.db_pool_timeout
)
# Query Optimization
from sqlalchemy import Index
Index('idx_process_instance_status', ProcessInstance.status)
Index('idx_process_instance_process_id', ProcessInstance.process_id)
Redis Caching¶
# Cache Configuration
cache = Redis(
url=settings.redis_url,
encoding="utf-8",
decode_responses=True,
pool_size=settings.redis_pool_size
)
# Cache Usage
@cached(ttl=300) # 5 minutes
async def get_process_definition(id: str):
return await db.get_process(id)
Process Engine Settings¶
# Token Batch Processing
settings = {
'token_batch_size': 100, # Process tokens in batches
'max_parallel_tokens': 50, # Maximum parallel token executions
'state_check_interval': 5 # Seconds between state checks
}
# Variable Size Limits
settings = {
'max_variable_size': 1048576, # 1MB
'max_total_variables': 10485760 # 10MB per instance
}
Scaling Strategies¶
Horizontal Scaling¶
# docker-compose.scale.yml
services:
worker:
build: ./backend
command: python worker.py
environment:
- PYTHMATA_RABBITMQ_URL=amqp://guest:guest@rabbitmq:5672/
deploy:
replicas: 3
resources:
limits:
cpus: '1'
memory: 1G
Load Balancing¶
# nginx.conf
upstream backend {
server backend1:8000;
server backend2:8000;
server backend3:8000;
}
server {
listen 80;
location / {
proxy_pass http://backend;
}
}
Monitoring¶
Metrics Collection¶
# Prometheus Metrics
from prometheus_client import Counter, Histogram
process_instances = Counter(
'process_instances_total',
'Total number of process instances'
)
execution_time = Histogram(
'process_execution_seconds',
'Time spent executing process instances'
)
Performance Dashboards¶
# Grafana Dashboard Configuration
dashboard = {
'process_metrics': {
'active_instances': 'pythmata_active_instances',
'execution_time': 'pythmata_execution_time_seconds',
'error_rate': 'pythmata_errors_total',
'token_throughput': 'pythmata_tokens_processed_total'
}
}
Optimization Tips¶
1. Database¶
- Use appropriate indexes
- Regular vacuum and analyze
- Monitor query performance
- Optimize connection pools
2. Caching¶
- Cache process definitions
- Cache frequently accessed data
- Use appropriate TTLs
- Monitor cache hit rates
3. Process Execution¶
- Batch token processing
- Parallel execution where possible
- Efficient variable handling
- Proper error handling
4. Network¶
- Use connection pooling
- Enable keepalive
- Compress responses
- Use WebSocket for real-time updates
Performance Testing¶
Load Testing¶
# locust test example
from locust import HttpUser, task, between
class ProcessUser(HttpUser):
wait_time = between(1, 3)
@task
def start_process(self):
self.client.post(
"/api/v1/processes/OrderProcess/instances",
json={"variables": {"amount": 100}}
)
Benchmarking¶
# Apache Benchmark Example
ab -n 1000 -c 10 http://localhost:8000/api/v1/processes
# wrk Example
wrk -t12 -c400 -d30s http://localhost:8000/api/v1/processes
Common Issues¶
1. Memory Leaks¶
- Monitor memory usage
- Implement proper cleanup
- Use memory profiling
- Set appropriate limits
2. CPU Bottlenecks¶
- Profile CPU usage
- Optimize hot paths
- Use async where appropriate
- Scale horizontally
3. Database Performance¶
- Monitor slow queries
- Optimize indexes
- Use connection pooling
- Regular maintenance
4. Network Issues¶
- Monitor latency
- Use connection pooling
- Enable compression
- Implement retry logic
Performance Checklist¶
- Database
- [ ] Indexes optimized
- [ ] Connection pools configured
- [ ] Query performance monitored
-
[ ] Regular maintenance scheduled
-
Caching
- [ ] Process definitions cached
- [ ] Cache size configured
- [ ] TTLs set appropriately
-
[ ] Hit rates monitored
-
Process Engine
- [ ] Batch processing configured
- [ ] Parallel execution enabled
- [ ] Resource limits set
-
[ ] Error handling implemented
-
Monitoring
- [ ] Metrics collection enabled
- [ ] Dashboards configured
- [ ] Alerts set up
- [ ] Performance baselines established